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Abstract. Phase stability in the Ni-A1 binary system is investigated using linear muffin-tin 
orbitals total energy (MO) calculations, They provide total energies for the different 
existing compounds and, using Connolly-Williams inversion, the many-body interactions 
occurring in the FCC and BCC lattices. These interactions are used in conjunction with the 
Cluster Variation Method (m) to calculate the pliase diagram. The computed phase 
diagram agrees very well with the experimental one. 

1. Introduction 

The modern theory of phase diagram calculations has been made possible by great 
advances in band-structure calculations, the theories of the configurational thermo- 
dynamics and phase transformations. Total energy calculations based on the local 
density approximation (LDA) are now sufficiently a m r a t e  to explain many properties 
of materials in terms of the underlying electronic structure [l]. An accurate calculation 
of the configurational free energy of the alloy is possible within various approximations 
such as mean field methods (Cluster Variation Method, CVM) or by numerical methods 
(Monte Carlo simulations) [2,3]. In these models, it is assumed that the internal energy 
can be written as a sum of multi-site interactions which converge rapidly. The fact that 
these interactions can be derived from first-principle calculations establishes the basis 
of a comprehensive first-principles theory of cohesive, structural and thermodynamical 
properties of metals and alloys. Two extreme types of approach to the calculation of 
these interactions have been developed; the first one starts from the energy of the 
completely disordered solidsolution calculated by the coherent potential approximation 
(CPA) [4]. The effective cluster interactions are calculated by the Embedded Cluster 
Method [5] or by the Generalized Perturbation Method (GPM) [6] using a perturbative 
treatment about the completely disordered state. In this case, the ordering energies can 
be written as an expression in terms of concentration-dependent nth-order effective 
cluster interactions. GPM can be developed with the first-principles multiple scattering 
formalism of the Korringa-Kohn-Rostoker coherent potential approximation [7]; how- 
ever, to our knowledge, no phase diagrams have yet been provided by this approach 
although, in the framework of the tight-binding approximation, interesting results have 
been obtained [%lo]. 
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The second approach is the so-called Connolly-Williams inversion Ill] and the 
closely related E-G approach [12]; here, the total energy is assumed to be written as a 
sum of configuration independent many-body interaction potentials multiplied by the 
multi-site correlation functions. The sum runs over all the cluster types and, in practice, 
it requires the existence of a maximum cluster beyond which the many body interactions 
are supposed to be negligible. This procedure has been used successfully by several 
authors [13-151 and we will adopt it here. The Ni-AI system presents both theoretical 
and technological interest, the aluminides having many desirable properties such as low 
density, high melting temperatures and high yield strength. 

From a theoretical point of view, Sigh and Sanchez [16] have shown that a CVM 
treatment using effective pair interactions determined from available thermochemical 
data was able to give a good representation of the phase diagram. Several quantitative 
total energy calculations [17-201 have also been performedfor ordered A N  compounds 
usinglinearizedmethods [21]. AU thesecalculationsconclude that astrong hybridization 
between the p states of A1 and the d states of Ni leads to the formation of bonding and 
antibonding states well separated by a pseudogap in the electronic density of states. The 
same trend has also been found using Tight Binding arguments [22]. A few calculations 
have treated more subtle effectssuch as the relative stabilitiesin Ni3Alcompounds [MI; 
van Schilfgaarde etnZ[23] have shown that non-self-consistent total energy calculations 
can be applied to this problem: they employ the linear muffin-tin method [21] using two 
different approaches. In the first approach, within the atomic sphere approximation, 
they employ an analogue of the local force theorem [24,W], in which the total energy 
difference between two structures comprises the band-structure energy plus small Cou- 
lomb corrections. In the second approach, they make no shape approximations to the 
potential and employ a recasting of the local-density functional proposed by Harris and 
Foulkes [26]. All these results are in good agreement with experimental determinations 
of the energies of formation of Ni-Al comounds [27], which is the primary condition for 
the phase diagram determination. For the second approach, i.e. calculations of the 
cluster interactions, a series of results has been proposed by Carlsson, using Connolly- 
Williams inversion [28,29] with a resummation scheme which leads to concentration 
dependent effective pair interaction (EPI). These so-obtained EPI are qualitatively com- 
parable to the ones obtained from mean field methods based on multiple-scattering 
theory [30] and give very short-ranged interactions and strong ordering tendencies. A 
tight-binding approach basedon the Cluster Bethe LatticeMethod (CBLM) hasalso been 
used and gives EPI values very close to Carlsson’s ones [Z]. 

The purpose of this work is to present a complete calculation of the phase diagram 
of the binary NiAl system combining the tetrahedron approximation of the CVM and the 
linear muffin-tin orbital method (LMTO). This determination requires the knowledge of 
SRO in solid solutions based on BCC and FCC underlying lattices, the stability of the 
different compoundsin the binary system and the liquid phase. The paper isorganized as 
follows. In section 2, we present a brief review of the quantum and statistical mechanical 
approaches used in our calculations. In section 3, we present the results of our cal- 
culations and compare them with the experimental ones. 

2. Free energy model 

In order to compute a phase diagram, we need to know the total free energy of the binary 
alloy in a given phase, then its energy and also its entropy of formation. 
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For the alloy in phase CY, the total free energy may be written as 

F" = (1 - c)F: + CFg + E; - rsp (1) 
where cis the concentration of the B element, FF, the free energy of pure element I in 
phase CY, E; and Sg are respectively the enthalpy and entropy of alloy formation. 

The first simplifying assumption regarding the evaluation of this total free energy is 
to assume that the free energy for the pure elements can be written as 

Ff = E r  - TSF (2)  
in which the cohesive energy Ef and entropy Sf are both temperature independent. 

The second assumption assumes that Sp is a purely configurational term, which 
means that the remaining entropy depends only on the concentration via the first two 
terms on the right hand side of (1). 

2.1. Energy of formation 

It has been shown in the introduction that to perform phase diagram calculations, the 
internal energy of an A-B alloy is assumed to be described in terms of a rapidly 
convergent series of concentration-independent multi-site interactions. More precisely, 
we assume that the total energy of a particular configuration CY is expressed by [31] 

m 

En,dr) = V m E ;  (3) 
Y 

V,(r) is the concentration-independent multi-site interaction associated with the multi- 
site correlation E ;  defined as [32] 

E y  = (1/Ny) E un,un2. . . uny 
I"il 

where U, = 1 - 2p,, takes the values +1 or -1 depending on the occupancy of site n, 
Ny is the total number of y-type clusters, and the sum runs over all y-type clusters that 
can be formed by combining sites on the entire crystal. The total energies and the multi- 
site interactions are generally lattice-parameter r (or volume) dependent. 

Given (3). the interactions are determined by an inversion of the sum for a finite 
number of configurations defined by the existence of a maximum cluster ymax beyond 
which the multi-site interactions vanish. 

Hence, froma finite numberoftotalenergiesfororderedstructuresand by truncating 
the summation in (3), a set of multi-site interactions is obtained from 

Vy(r)  = 0 Ymax < Y <cc 

ais  the empty cluster. 
Of course, one performs total energy calculations of as many ordered structures as 

there are unknown multi-site interactions required by the truncation but it is clear that, 
in this approach, this truncation leads to a non-uniqueness of the cluster interactions 
[32]. However, if the concentration-independent multi-site interactions decay rapidly, 
one can expect that this difficulty becomes minor and then in practice, the interactions 
can be uniquely computed. 
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In a series of papers, [28,29,33], Carlsson has computed cluster interactions for FCC 
and BCC alloys of aluminium with transition metals using Connolly-Williams inversion. 
For FCC calculations, he used A-FCC, B-FCC, A3BLl2 ,  ABTLl2, and AJ3-Llo with 
ideal ./a ratio. Only first-nearest-neighbour pair interactions, triangle and tetrahedron 
cluster interactions are included. For BCC calculations, he takes A-BCC, B-BCC, A 3 B  
DO3, AB,-DOs, AB-B2and AB-B32. In thiscase, first- andsecond-nearest-neighbour 
pair interactions, triangle and tetrahedron cluster interactions are taken into account. 
He finds that this truncation is a reasonable approximation for these systems; for a Ni- 
AI system, the convergence of the cluster expansion appears to be very rapid, three- and 
four-atom terms having 15% and 5% of the magnitude of the pair t e r m  [28]. This result 
is confirmed by the results for the effective pair interaction obtained via the Generalized 
Perturbation Method applied to the Korringa-Kohn-Rostoker multiple scattering for- 
mulation of the Coherent Potential Approximation (KKR-CPA) which finds roughly a 
factor of ten reduction at the second-neighbour distance [30]. 

Carlsson has also shown that it is possible to convert multi-site interactions into 
concentration dependent effective pair interactions [28]. They are obtained by making 
a truncated approximation in the higher-order correlation functions, using only the pair 
correlation function. Even if this development suffers from a loss of accuracy, the 
effective pair interactions present advantages in their ease of interpretability and their 
practical usefulness. 

Then, using first-principles total energy calculations, we are able to compute the 
energies of formation of stoichiometric compounds occurring in the studied phase 
diagram and the multisite interactions allowing us to treat short-range order in the 
FCC- or Bcc-based solid solutions or ordered superstructures presenting an extended 
concentration range. 

2.2. Confrgurational entropy 

As for the energies of formation, different configurational entropy approximations 
depending on the nature of the phase being considered are used. For the strictly stoi- 
chiometric compounds, the configurational entropy is taken equal to zero. For the 
solid solutions, or ordered phases presenting an extended concentration range, the 
configurational entropy is described by means of the CVM. The CVM entropy is found to 
be approximately given by a sum of the partial cluster entropies [34]. The maximum 
cluster used in our study is the tetrahedron containing first and second neighbours in the 
BCC lattice. In the tetrahedron approximation, the entropy of a BCC disordered system 
isgiven by [16] 

+ x x i  I n x i )  

where w, , , , t i j k , y~’ , y$~’  andnidenote,respectively, theprobabilityoffindingtetrahedra, 
triangles, second-neighbour pairs, first-neighbour pairs and points in the configuration 
given by the subscripts (i equals A or B in a binary alloy). 



Determination of the Ni-AI phase diagram 949 

For the disordered FCC structure we have 

The cluster probabilities are related by the following consistency relationships 

t . .  y k  = x Wijk[ ( 7 4  
I 

y p  = w..  ZlM 
ki 

x i  = Wijkj. 
jlk 

For the case of an ordered phase present in a range of concentration, long-range order 
is described in the usual manner by means of sublattices reflecting the symmetry of the 
ordered structure. A given cluster may now consist of points in the crystal belonging to 
different sublattices and their probabilities have to be distinguished accordingly (see 
[35] for more details). 

2.3. Liquid alloys 

Liquid alloys may also display SRO as has recently been shown for liquid AI8&,, alloy 
[36] and it is essential to consider SRO when determining the thermodynamic data. The 
best way to perform such calculations is to use a variational method with, as a reference 
system, a mixture of hard spheres which all have the same diameter but different charges 
and which interact through a screened Coulomb potential [37]. This reference system 
has been found, coupled with pseudo-potentials or TB-CBLM, to describe well the struc- 
tural and thermodynamics manifestations of ordering in disordered alloys [38]. Very 
recently, it has been shown, using a tight-binding description of the total energy of the 
alloy [39] that, for the thermodynamic quantities, similar results are found for transition 
metal-based alloys if the liquid configurational free energy is approximated by the 
tetrahedron approximation of the CVM free energy in the disordered FCC structure. We 
have kept this approximation to describe the Ni-AI liquid phase in the present work. 

2.4. Phase equilibrium 

In order to determine the equilibrium phase diagram, it is more convenient to minimize 
the grand potential P given by 

P = F- p f l  (8) 

where ,u is the effective chemical potential. In the present work, the minimization of the 
grand potential is carried out with respect to a set of independent configurational 
variables and the variable r, since effective cluster interactions are also a function of the 
lattice parameter; in the use of the tetrahedron approximation, these configurational 
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variables are chosen to be the tetrahedron probabilities wkw at constant temperature T 
and effective chemical potential p, taking into account the normalization constraint 

2 Wijk, = 1. 
ijlk 

(9) 

This minimization is done using the Natural Iteration (NI) method developed by 
Kikuchi [40]. The NI equationsused in the present model have been presentedelsewhere 
[16] and will not be repeated here. 

The equilibrium phase diagram between the two phases I and I1 is computed using 
the same scheme as proposed by Kikuchi and Murray [41]. For the same initial value of 
the effective chemical potential p, the grand potentials of phases I (Ql) and I1 (QIl) are 
calculated using the procedure described above. If Ql = QII, the equilibrium conditions 
are realized, but if not, the value of p is modified until Q, = 5111. 

3. Results for the Ni-AI system 

The Ni-AI phase diagram displayed in figure 1 is characterized by a liquid phase, a FCC 
(Al) phase at both the AI and Ni rich ends, a non-congruently melting compound AI,Ni 
and three intermediate phases with a variable range of solubilities AI&,, AlNi and 
AINi,. Several attempts have beenmade to describe the NiAIphase diagram. Asalready 
mentioned, Sigli and Sanchez [16] have shown that the tetrahedron approximation of 
the CVM is an appropriate system to describe the phase diagram of this binary system. 

In that case, EPI were determined from experimental thermodynamic data and 
available phase diagram information; these EPI are in good agreement with the ones 
determined by Carlsson [28] and Colinet eta1 [22] using quantum mechanics arguments. 

3.1. Ground states ur zero remperature 

As a first step, we have calculated the energies of formation of the four intermediate 
phases observed in the equilibrium phase diagram. In the snucturberichr notation, these 
phases are called the orthorhombic DOm (A13Ni) phase, the hexagonal D5,, (A13Ni2) 
phase, thecubicB2(AINi)phaseand thecubicLI? (AINi,)phase. We havealsoselected 
two other FCC superstructures, Ll2(AI3Ni) phase and Ll,(AINi) phases and three other 
BCC superstructures, DO,(AI,Ni), DO,(AlNi,) and B32(AINi) phases. All these cal- 
culations allow us to check our prediction of the correct ground states and also to extract 
multi-site interactions to study the B2 (AINi) and L12 (Ami,) phases, stable over an 
extended concentration range and described as sRo-phases. We mention that although 
the hexagonal D513 phase is experimentally reported to be stable over a small con- 
centration range, it will be described as a stoichiometric compound. 

To calculate the energies of the different phases, we have employed the all-electron 
total energy local density formalism as carried out with the linear muffin-tin orbital 
(LMTO) method [21]. The LMTO calculations have been done in the atomic sphere 
approximation, including combined corrections, as developed in the code of M van 
Schilfgaarde, A T Paxton and M Methfessel (unpublished result). We have used the 
parametrization of the von Barth Hedin exchange correlation energy density given by 
Moruzzi et a1 [42]. In our Brillouin zone integrals, we use a uniform mesh of sampling 
points with at least 16 divisions along each of the primitive vectors. With such a mesh, 
we obtain a convergence of the absolute value of the total energy of 0.1 mRy. The same 
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Figure 1. Experimental phase diagram of the Ni-AI 
system. 
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Table 1. LMTO results for cohesive energies and equilibrium molar volumes of different 
StNChUeSin the Ni-Alsptem. 

Cohesive energy Lattice parameter 
Structure Composition (kJ mol-') (au) 

FCC A,  
Li, 
DO= 

DO, 
B2 
B32 

'Ni -584.231 
Ni,N -586.732 
Ni& -5%(.074 
NiAl -548.698 
NiAl, -468.407 
NiAl, -469.580 
Al -400.794 

Ni -581.185 
Ni& -585.104 
NiAl -568.112 
NiAl -535.162 
NiAl, -463.064 
AI -395.569 

NilAI, -536.019 
NiAJ, -486.543 

6.52 
6.675 
6.685 
6.828 
7.185 
7.146 
7.522 

5.188 
5.270 
5.413 
5.426 
5.674 
6.003 

7.500 
12.350 

radius value was taken for the Wigner-Seitz spheres of all the elements and we include 
the spherical harmonic up to I = 2 (d orbitals) in constructing the basis functions. 

For each structure, the total energies provided by the LMTO method are obtained for 
different values of the volume, the minimum of this curve determined the equilibrium 
total energy and the equilibrium volume. Moreover, the bulk modulus, which is related 
to the curvature of the total energy with volume is obtained using a fit based on 
Mumaghan's equation of state [43]. In table 1, are calculated equilibrium cohesive 
energies and molar volumes of all the considered phases. We recall that the cohesive 
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energy is defined as the difference of the total energy of that phase and the total energy 
of the constituent atoms at infinite interatomic distances. The ground states of both Ni 
and AI are predicted to be FCC. The energy difference between the FCC and BCC struc- 
tures, defined as AEFGBCc = ELT - EgF, is 3.046 kl mol-' and 5.224 kl mol-' for 
Ni and AI respectively. We mention that the value of the structural energy difference 
for AI isveryclose totheoneobtainedbymwcalculations[15]. Figure2showsresults 
for the formation energies as a function of composition for all the studied compounds. 
These formation energies are defined as 

At the equiatomic composition, the calculated formation energies of the competing 
phases,i.e. B2, B32andLl,phases,stronglyfavourtheB2phaseincompleteagreement 
with experimental data. The computed value for AEof -75.6 kJ mol-' is more negative 
than the experimental value, -58.8kl mol-' [U]. However, our result is in complete 
agreement with other theoretical determinations [17] but this phase is known to present 
anti-sites and vacancies even at the equiatomic composition, factors which are not 
considered in these calculations. For 75% of Ni, the L1, phase is predicted to be more 
stable than the DO, phase, both being more stable with regard to a mixture of the Ni- 
Fcc and NiAI-B2 phase. The computed value for AEof -48.36 kJ mol-' compares well 
with the experimental value, -41.0 kJ mol-'. For 25% of Ni, the L12 phase is found to 
be yet more stable than the DO, phase, but its value is located well above the line 
connecting the formation energies of AI-FCC and NiAI-B2 phases. In fact for this 
composition, the most stable structure is the DO, orthorhombic phase, a result which 
is also obtained in our calculations. Its calculated formation energy, -39.89 kl mol-' is 
in complete agreement with the experimental value, -37.7 kl mol-'. 

At 40% of Ni for which the hexagonal D5" phase is experimentally reported to be 
stable over a small concentration range, there is no superstructure based on the BCC or 
FCC lattice. However, it is predicted to be more stable with regard to a mixture of NiAI, 
DOm and NiAI-B2 phases since the calculated formation energy, -61.85 kl atom-', 
close to the experimental one, -56.5 kl atom-', is just above the line connecting the 
formation energies of both DOm and 82 phases. 

3.2. Cluster interactions and disordered alloys 

As already mentioned, the concentration-independent multi-site interactions can be 
extracted from the total energy calculations using the Connolly-Williams inversion 
method. 

In figures 3(a) and (b) are presented cluster interactions obtained for the FCC and 
BCC lattices as a function of the volume. These results reveal a very small difference 
between the FCC and BCC interaction parameters. V ,  and VI display a strong volume 
dependence. The shape of VO is similar to the one of the E(V) function since Vo is given 
by a sum of the energies of the different superstructures occurring on a given lattice. 
The shape of V ,  is essentially due to the fact that the two alloying elements present two 
different volumes. Let us mention that the strengths of V ,  and V,  are much smaller than 
that of V 2 ,  indicating a reasonable degree of convergence already at the four atom 
supercell level. At this level of discussion we recall that in the tetrahedron approximation 
of the Connolly-Williams method for Fcc-based structures, the L l z  and DOn structures 
display the same correlations and then are degenerate. LMTO resultsprovide that 
for X N ~  = 0.25, - E D O ~  = +1.17 kJ mol-' while for xNi = 0.75, ELIZ -EDorz = 
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Figure 3. Cluster interactions as a function of the volume (a) Fcc lattice; (6) BCC lattice. 

-2.66 kl mol-'. These two differences are small indicating also that the tetrahedron 
approximation is reasonable. It is interesting to compare the results obtained by LWO 
calculations to the ones provided by GPM-KKR-CPA [30] or TELCBLM (221 approaches. This 
can be done by calculating the disordered energy and the effective pair interactions as a 
function of composition. 

The disordered energy is obtained using the fact that the pair and higher order 
correlations are given as products of the point correlatioiis for the totally disordered 
state. For the FCC and Bcc-based structures, all atomic positions are equivalent and we 
have: 

where ny is the number of sites contained in the y cluster. The energy of the disordered 
configuration is then given by 

= (51)"Y (11) 

Ymnr 

.E:. = VY(E,)"Y. (12) 
Y 

Comparing cluster interactions from the CVM and effective pair interactions from 
GPM or CBLM can be done using a resummation of the higher order cluster interactions 
at fixed concentration, corresponding to a lowest order expansion of the total energy in 
powers of the short-range parameters 1281. 

With the set of clusters used in our calculations, we obtain for the FCC lattice 

Vg" = %(V, + 3v3g1 + 6V4#) 

vpf f  = t(V:" + 2v3.5, + 4V&) 

v y  = f(vp + v351 + 2V&) 

vzff = $(vA, + VB, - 2Vm) 

(13) 
and for the BCC lattice: 

(14) 

where the effective pair interactions V;" are defined as 

V,, VBB, V ,  are pair potentials evaluated at the separation between first-nearest 
(15) 
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neighbours for the FCC lattice and first- and second-nearest neighbours for the BCC 
lattice. 

As already mentioned by Carlsson, the EPI dependence as a function of the con- 
centration isgiven by a higher ordercluster than the pair here, triangle and tetrahedron. 
Two distinct approaches are used to obtain the concentration-dependent EPI: (i) the 
‘locally relaxed’ treatment for which each cluster in the alloy is able to relax to its 
preferred lattice constant; (ii) the ‘frozen lattice’ treatment where each cluster is cal- 
culated at a k e d  lattice constant. We use the ‘locally relaxed’ treatment of the lattice 
relaxation effects, which is considered to be more accurate than the ‘frozen lattice’ 
treatment [ZS]. In figure 4 are displayed values for the first-nearest-neighbour inter- 
actions on the FCC lattice as a function of equal to xN,-xA,). Our results are of 
course very similar to Carlsson’s ones since the augmented-spherical wave (ASW) and 
LMTO methods used to calculate total energies are essentially the same. Tight-binding 
basedresultspresent the sameconcentrationdependence 1221, and alarge positive value 
of V;” at the Ni rich end, consistent with the very strong ordering tendency in NiAI 
which remains ordered up to its melting point; at the AI-rich end, the value of Vgff drops 
rapidly. 
Our calculated EPI also display a semiquantitative agreement with tight-binding 

ones, being equal to 2.84 kJ, 7.02 W and 10.34 W for x N ,  = 0.25,0.5 and 0.75, 
respectively, while they are equal to 2.65 kJ, 4.58 kJ and 7.0 kJ in Colinet’s approach. 
Another instructive comparison can be done with EPI determined by Turchi et a1 [30] 
in Ni-AI alloys around an equiatomic composition. These authors found Vt)cr 
(BCC) = 8.20 kJ for xN, = 0.5 compared to 9.97 W extracted from LMTO calculations or 
to 6.75 Id obtained by Colinet et a1 [22]. 

In fact, Carlsson’sresummationprocedurecorrespondstoahightemperatureexpan- 
sion of the correlation functions and may be considered to be a good approximation to 
describe effective pair interactions in the liquid phase. For this kind of liquid alloy, 
experimental results based on neutron diffraction experiments [36,44] have shown that 

(with 
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A-A and J3-B distances are quite similar in the alloys but different from the nearest 
distances in pure liquids. Moreover it has been found that the local coordination is 
roughly equal to 11, very close to the Fcc-coordination. Then, for each concentration, 
Edis and Vg” used to describe the liquid part are obtained from (12), (13) at a fixed given 
volume. However, for each concentration a new volume is used. The concentration- 
dependent volume is taken to be similar to the one obtained for the Fcc-based solid 
solution which displays a similar variation to the experimental one seen in the liquid 
phase [45], Another argument to justify this approximation is that if the pair interactions 
oftheFCCandBcclatticescomeout similarly,then theyarenotsensitive to theunderlying 
lattice (at least for the Ni-AI system). 

In figure 5 are plotted these values of the Viff as a function of the concentration. By 
comparison with the EPI obtained by the ‘locally’ relaxed treatment on the FCC and BCC 
lattice, wecansee that these newvaluesof Viff display asmoother variation as afunction 
of the composition. 

The same conclusion is reached from the comparison of the random energy obtained 
in the locally relaxed treatment for the FCC and BCC lattices with the values obtained by 
this new treatment. From figures 4 and 5, we see that the three curves display negative 
values at all concentrations; the minimum is shifted towards the Ni rich part for the two 
curves obtained by the ‘locally relaxed’ treatment. The third curve displayed in figure 5, 
and used to describe the liquid phase, presents a more symmetrical shape. 

3.3. Phase diagram calculations 

Let us sum up the strategy of our calculations 

(i) The energies of the four compounds occurring in the phase diagram are obtained 
as a function of the volume. The minima of these curves are chosen to obtain the 
formation energies of these compounds. The entropies are considered to be equal to 
zero for the strictly stoichiometric compounds such as AI3Ni, AI3Ni2 phases. For AlNi 
and AINi3 phases, the entropies of configuration will be given by the tetrahedron 
approximation of the CVM for ordered phases based on the FCC or BCC lattices. 

(U) The two solid solutions based on the FCC and BCC lattices are described as short- 
range-order solutions using the CVM treatment in its tetrahedron approximation. The 
cluster interactions are obtained as a functionof the volume using the Connolly-Williams 
approach. 

(iii) The difference in energy between FCC and BCC structures are taken from WO 
results. 

(iv) The liquid phase is also described as a short-range-order phase using the tetra- 
hedron approximation of the CVM free energy in the disordered FCC structure. The 
effective pair interactions are obtained from Carlsson’s resummation procedure which 
corresponds to a high temperature expansion of the correlation functions. Although this 
model is developed with a solid-state approximation, it does a good job of describing 
the influence of chemical short-range order on the thennodynamic properties of the 
liquids [39, 461. Of course, the continuous phase space of the nucleii’s motion and 
structural information, such as pair correlation functions, are lost. However, the chemi- 
cal ordering contribution to the entropy and the energy, which are quantities of central 
interest in our calculations, are only proportional to the concentration fluctuations. 
Using a statistical approach based on a ‘discretized mesh’ rather than the continuous 
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Figure 5. Concentration-dependent effective pair 
interactions and random energy for liquid phase. 

Figure 6. The Ni-AI phase diagram calculated with 
only m-based structures taken into account. 

phase space of the nucleii's motion may be considered as correct to describe the con- 
centration fluctuations. 

However, there is still a 'missing link' in our approach which is the thermodynamic 
properties of the pure metals or, in other terms, the difference in free energy between 
the liquid and crystalline phases. Although the density functional theory has made 
significant progress in the modelling of liquids, application to the determination of the 
melting temperatures does not yet appear possible. Therefore, we have chosen to use 
thermodynamic compilations to obtain melting temperatures T$c"q and the latent 
heat of melting AE:CC-"iq for both Ni and AI elements [47]. In this case the free energy 
of these elements in their liquid state is given by 

Flq(T) = E F  + AEFC'h - T(AEFCC-Iiq)/(rfrr-"q), (16) 
Ifonly Fcc-basedequilibria are considered, the phase diagram of figure 6isproduced. 

Of course, only the Ni-rich portion can be directly compared with experimental results 
since for Ni concentration less than 0.75 structures other than Fcc-based superstructures 
appear. The main features of the diagram are a miscibility gap (MC) with a maximum 
temperatureof2630 Kand twoorderedphasesLl,andLlowith transition temperatures 
of 2820 and 3135 K respectively. As already mentioned by Carlsson and Sanchez [48], 
t h e ~ ~ i s c a u s e d  byanelasticinstabilityandcan be understood through theconcentration 
dependence of the calculated energy of mixing for the completely random FCC solid 
solution. AE,,isnegative at allconcentrationslike the curvesobtained with the 'locally 
relaxed' treatment (see figure 4) but here its curvature is negative for Ni concentrations 
less than 30%: this curvature is due to the peculiar volume dependence of V,,  V 3  and 
V4, and another way to come to the same conclusion is to compute the phase diagram 
ignoringvolume effectsaltogether. In that case the diagram displayed in figure 7strongly 
resembles the previous diagram except for the MG on the Al-rich side. 

When the families of both FCC and Bcc-based free energy curves are combined with 
thestoichiometricAl3NiandAI~Ni2compoundsandtheliquidphase, the phasediagram 
of figure 8 is obtained. All the main features of the experimental phase diagram (see 
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Figure 8. Calculated phase diagram of the Ni-AI 
system. 

figure 1) have, at least qualitatively, been reproduced. The quantitative agreement is 
not as good. 

(i) The B2 phase is found to melt congruently at T = 2600 K, before undergoing a 
disordering reaction. Its overestimate of the melting temperature seems to be attribu- 
table to the overestimate of the heat of formation of the B2 compound. However, in a 
more recent paper [49] Desai gives an experimental value of the heat of formation of 
theNiAl compoundequal to -71.65 kJ mol-'whichisveryclose toourcalculatedvalue. 
He mentions the difference between the expenmental values but no explanation is 
provided. Then the origin of the discrepancy of the calculated phase diagram with the 
experimental phase diagram in this region is not clear. Let us recall that this compound 
is known to present antisites and vacancies even at the equiatomic composition, factors 
which are not considered in these calculations. 

(U) The computed phase diagram exhibits two eutectics, one at the AI-rich side and 
another at the Ni-rich side, just like the experimental phase diagram. The calculated 
eutectic temperatures are in relatively good agreement with the experimental ones since 
they have been found equal to 900 K at the AI-rich side and 1680 K at the Ni-rich side 
(compared with 913 K and 1658 K respectively). 

(iu) The two complex DOZO and DSI3 structures are found to melt peritectically. For 
the A13Ni compound, the peritectic temperature is some 27 K lower than experiment 
indicates but for the AI3Ni2 compound it is 56 K higher than the experimental one. 

Our calculations lead also to a peritectic decomposition of the Ni,N compound. 
More particularly, the eutectic between the solid phase A', Ni3AI(Ll2) and the Liquid 
one takes place on the right of the peritectic, which is in agreement with the usually 
adopted phases diagrams. However, let us mention that this part of the phase diagram 
is very sensitive to the values of the energies of the three phases which determine the 
equilibrium properties. From an experimental point of view, we point out that the phases 
boundariesof the peritectic decompositionof the Ni3AI compound are stillcontroversial. 
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4. Conclusion 

It was shown that ab initio calcuIations of the Ni-AI phase diagram are, in many points, 
in agreement with experimental information. They have been obtained by combining 
total energy ~m calculations with the tetrahedron c v ~  approximation. No relaxation 
and no vibrational effects have been taken into account. Only short-range order on FCC 
and BCC lattices have been introduced using c v ~  treatment in competition with the 
occurrence of complex phases like the DO, and D5,3 phases. The thermodynamic 
description of the liquid phase has been achieved by approximating this phase to a FCC- 
based disordered phase tominimize the number of parameters. The melting temperature 
and latent heat of the pure components are the only two parameters which have been 
introduced from outside the first-principles matrix. We believe that our results show 
that first-principles studies of phase equilibria may now be considered as feasible with a 
good degree of confidence. 
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